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Pre-trained Language Models
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Motivation

How to use AMR structures to pre-train PLMs?
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Method
Framework:
• Event Semantic Pre-training
• Event Structure Pre-training
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Method
Contrastive Learning:
• Positive instances,  Negative instances
• Follow SimCLR (Chen et al. 2020)
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Method
• Event Semantic Pre-training:
• Positive instances: Node pairs linked by edge Arg, Time, Location
• Negative instances: Other Node pairs
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Method
• Event Structure Pre-training:
• Positive instances: subgraphs sampled from the same AMR structure
• Negative instances: subgraphs sampled from different AMR structures

Parsed AMR Graphs
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Supervised Experiments

25



Supervised Experiments
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Unsupervised Experiments
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Unsupervised Experiments

28



Analysis
• Performance vs. Different AMR parsers
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Analysis
• Performance vs. Different pre-training corpus
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Summary & Future Work

• Propose a contrastive pre-training framework for EE task
• Utilize rich event knowledge lying in large unsupervised data

• Other kinds of semantic structures
• Overcome noises
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